杏彩体育少即是多!10亿参数「小巨人」击败ChatGPT
杏彩体育App官方下载杏彩体育App官方下载大语言模型的Scaling Law被一些人视为「金科玉律」,但另一些人却不以为意。前阵子,香港大学马毅教授就公开宣称,「如果相信只靠Scaling Law就能实现AGI,你该改行了」。确实有很多模型不是单纯靠资源的堆砌,而是凭借创新能力脱颖而出。验证了一条不同于Scaling Law的道路——少即是多杏彩体育。xLAM-1B就是如此,只有10亿参数,但是在功能调用任务中表现优于更大规模的模型,包括OpenAI的GPT-3.5 Turbo和Anthropic的Claude-3 Haiku。西方将这种以弱胜强的故事称之为「David-versus-Goliath」(大卫迎战歌利亚),这源于一个圣经故事——大卫与巨人歌利亚作战时还是个孩子,他不像歌利亚那样穿着盔甲,他捡了一块石头,放在投石器里。把石头甩出去,击中歌利亚的额头,击倒了这个巨人。科技媒体Venturebeat在报道这个小模型时,就将之比喻为人工智能领域的「大卫迎战歌利亚」时刻。简言之,这得益于在数据处理上的创新方法。其背后团队开发了APIGen,这是一套自动化流程,可以生成高质量、多样化且可验证的数据集,用于训练AI模型在函数调用任务中的表现。
xLAM-1B最令人欣喜的在于,它不占地儿。因为模型规模小,所以适合设备上的应用。这对企业人工智能的影响是巨大的,它有可能使AI助手功能更强大、反应更灵敏,并且能在计算资源有限的智能手机或其他设备上本地运行。训练数据的质量和多样性是支撑xLAM-1B强大性能的关键。APIGen自动数据生成流水线个可执行API,对每个数据点进行了严格的三阶段验证:格式检查、实际函数执行和语义验证。
各种AI模型在不同评估指标下的性能对比图。GPT-4-0125-Preview在总体准确性方面遥遥领先,而xLAM-7B等较小的模型在特定任务中表现出了竞争力,这对大模型总是表现更好的说法提出了挑战
虽然许多公司都在竞相建立越来越大的模型,但xLAM-1B所使用的方法表明,更智能的数据处理可以带来更高效、更有效的人工智能系统。
通过关注数据质量而非模型大小,xLAM-1B提供了一个很好的例子,它可以用比竞争对手少得多的参数执行复杂的任务。
xLAM-1B展现出的端侧AI的发展潜力,很可能标志着人工智能领域的重大转变——挑战「模型越大越好」的观念,让人工智能在消耗有限资源的条件下也能持续生长。目前,由于所涉及模型的规模和复杂性,许多先进的人工智能功能都依赖于云计算。如果像xLAM-1B这样的较小模型也能提供类似的功能,就能让更强大的人工智能助手直接在用户的设备上运行,从而提高响应速度,并解决与基于云的人工智能相关的隐私问题。随着边缘计算和物联网设备的激增,对更强大的设备上人工智能功能的需求也将激增。xLAM-1B的成功可能会催生新一轮的人工智能开发浪潮,其重点是创建为特定任务量身定制的超高效模型,而不是「样样通」的庞然大物。这可能会带来一个更加分布式的人工智能生态系统,在这个生态系统中,专业模型在设备网络中协同工作,可能会提供更强大、反应更快、更能保护隐私的人工智能服务。这一发展还能使人工智能能力化,让较小的公司和开发人员无需大量计算资源就能创建复杂的人工智能应用。此外,它还可以减少人工智能碳足迹,因为较小的模型在训练和运行时所需的能源要少得多。xLAM-1B给业界带来的冲击有很多,但有一点是显而易见的:在人工智能的世界里,大卫刚刚证明了他不仅可以与歌利亚竞争,还有可能将其淘汰。人工智能的未来可能不在被巨头所操控的云端,而是在你自己手中。参考资料: